Crystal Structures of C_4-Dicarboxylate Ligand Complexes with Sensor Domains of Histidine Kinases DcuS and DctB

Jonah Cheung and Wayne A. Hendrickson

From the Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10032

Two-component signaling systems allow bacteria to adapt to changing environments. Typically, a chemical or other stimulus is detected by the periplasmic sensor domain of a transmembrane histidine kinase sensor, which in turn relays a signal through a phosphotransfer cascade to the cognate cytoplasmic response regulator. Such systems lead ultimately to changes in gene expression or cell motility. Mechanisms of ligand binding and signal transduction through the cell membrane in histidine kinases are not fully understood. In an effort to further understand such processes, we have solved the crystal structures of the periplasmic sensor domains of *Escherichia coli* DcuS and of *Vibrio cholerae* DctB in complex with the respective cognate ligands, malate and succinate. Both proteins are involved in the regulation of C_4-dicarboxylate uptake in rhizobia as part of nitrogen fixation (10). DctB, like DcuS, is a transmembrane sensor kinase that has been shown to be involved in the direct sensing of C_4-dicarboxylates such as succinate (11). Its periplasmic sensor domain is predicted to contain \sim140-residue periplasmic domain flanked by two hydrophobic transmembrane helices and a cytoplasmic portion comprising a coiled-coil domain, a cytoplasmic PAS domain, and a histidine kinase domain (6). It has been shown in vitro that the sensing of C_4-dicarboxylates by DcuS is through direct binding (8). Although the solution structure of the periplasmic domain of DcuS has been solved (9), the mechanism of ligand binding is still unclear.

The DctB-DctD two-component system is involved in the regulation of the anaerobic fumarate respiratory pathway in *Escherichia coli* (5, 6). The sensor kinase DcuS is a member of the CitA family of histidine kinases, and it responds to C_4-dicarboxylates such as fumarate, succinate, malate, and tartrate (5, 7). Upon detection of its cognate ligand, the DcuS-DcuR system up-regulates the synthesis of both fumarate reductase (frdABCD) and also the anaerobic fumarate-succinate antiporter DcuB. DcuS is predicted to contain an \sim140-residue periplasmic domain flanked by two hydrophobic transmembrane helices and a cytoplasmic portion comprising a coiled-coil domain, a cytoplasmic PAS domain, and a histidine kinase domain (6). It has been shown in vitro that the sensing of C_4-dicarboxylates by DcuS is through direct binding (8). Although the solution structure of the periplasmic domain of DcuS has been solved (9), the mechanism of ligand binding is still unclear.

The DctB-DctD two-component system is involved in the regulation of C_4-dicarboxylate uptake in rhizobia as part of nitrogen fixation (10). DctB, like DcuS, is a transmembrane sensor kinase that has been shown to be involved in the direct sensing of C_4-dicarboxylates such as succinate (11). Its periplasmic sensor domain is predicted to contain \sim270 amino acid residues, almost twice that of the DcuS sensor domain (12). The response regulator DctD controls the expression of the dicarboxylate transporter DctA, another integral membrane protein (10). Studies have shown that either the ligand specificity or the signaling state of DctB may be modified by DctA, through a possible direct interaction between DctA and DctB (7, 11). The DctB ortholog in *Vibrio cholerae* is the product of gene VC1925, a protein annotated in the Swiss-PROT/TrEMBL (13) data base as a putative histidine kinase sensor under accession number Q9KQ53. It shows high sequence similarity to the previously studied rhizobial DctB sensors, and it has been grouped into the NtrB C_4-dicarboxylate sensor histidine kinase family (7). The exact function of DctB in *V. cholerae* has yet to be determined.
In this study we present high resolution crystal structures of the periplasmic domains of both *E. coli* DcuS and *V. cholerae* DctB in complexes with their cognate ligands malate and succinate, respectively. These two sensor domains show similarities in structure and in ligand binding that provide possible clues toward the understanding of signal transduction in two-component histidine kinase proteins.

EXPERIMENTAL PROCEDURES

Cloning—For the generation of the DcuS construct, a DNA fragment corresponding to the periplasmic domain of DcuS from residues 42 to 181 was PCR-amplified from genomic *E. coli* K12 DNA (ATCC Bioproducts) using the appropriate 5’ and 3’ primers. The primers were engineered to produce a DNA fragment flanked by a BamHI restriction site at the 5’ end and an XhoI restriction site at the 3’ end followed by a stop codon. The amplified DNA was subsequently ligated into the ampicillin-selectable pET22b (Amersham Biosciences) expression vector at the BamHI/XhoI sites. The resulting construct allowed for the isopropyl β-D-thiogalactopyranoside (IPTG)-inducible expression of a soluble N-terminal glutathione S-transferase fusion protein containing an internal thrombin cleavage site that would leave only an additional glycine and serine residue on the N-terminal end of the protein upon cleavage.

Generation of the periplasmic DctB construct entailed PCR amplification of a DNA fragment corresponding to residues 28–286 of DctB from genomic *V. cholerae* MO45 DNA (ATCC Bioproducts). The 5’ primer used in the PCR contained an NdeI restriction site, and the 3’ primer contained a stop codon and an XhoI restriction site. The resulting DNA fragment could be ligated into the ampicillin-selectable pGEX-4T-2 (Amersham Biosciences) expression vector at the BamHI/XhoI sites. The resulting construct allowed for the synthesis of a soluble N-terminal glutathione S-transferase fusion protein containing an internal thrombin cleavage site that would leave only an additional glycine and serine residue on the N-terminal end of the protein upon cleavage.

Expression and Purification—Native DcuS-(42–181) protein was expressed as a glutathione S-transferase fusion protein from a 4-liter culture of Novagen *E. coli* BL21 (DE3) cells grown in Luria-Bertani (LB) media containing 100 µg/ml ampicillin. The culture was originally started as a 1:100 inoculation from an overnight culture grown in LB (100 µg/ml ampicillin) at 37 °C. Induction began with the addition of IPTG to 1 mM for 2 h at 37 °C upon reaching an optical density (OD) of 0.6. Sel-enomethionyl (SeMet) DcuS-(42–181) was produced in the same manner except that only a 2-liter culture of cells was used instead with induction at 30 °C for 3 h. The cells were harvested by centrifugation and resuspended in 20 ml of phosphate-buffered saline, pH 7.4, 5 mM SeMet. The cells were grown in minimal media containing methionine instead of SeMet and 37 °C. Induction began with the addition of IPTG to 1 mM for 2 h at 37 °C upon reaching an optical density (OD) of 0.6. Sel-enomethionyl (SeMet) DcuS-(42–181) was produced in the same manner except that only a 2-liter culture of cells was used instead with induction at 30 °C for 3 h. The cells were harvested by centrifugation and resuspended in 20 ml of phosphate-buffered saline, pH 7.4, 5 mM SeMet. The cell supernatant was prepared by sonication and further purified by gel filtration on a Superdex 200 26/60 (GE Healthcare) column previously equilibrated with 20 mM HEPES, pH 8.0, 50 mM NaCl, 1 mM EDTA, and 5 mM l-malate. The protein appeared to be monomeric by gel filtration chromatography and was homogeneous when analyzed by SDS-PAGE and native PAGE.

SeMet DctB-(28–286) was expressed in the same manner as SeMet DcuS-(42–181) except that only a 2-liter culture of cells was used instead with induction at 30 °C for 3 h. The cells were harvested by centrifugation and resuspended in 20 ml of phosphate-buffered saline, pH 7.4, 5 mM SeMet. The cell supernatant was prepared by sonication and further purified by gel filtration on a Superdex 75 26/60 (GE Healthcare) column previously equilibrated with Q-buffer, washing with 20 volumes of Q-buffer, and elution using a 50–400 mM NaCl gradient over a total volume of 120 ml. DctB-(28–286) eluted from the column at around 150 mM NaCl and was further purified by gel filtration on a Superdex 75 26/60 (GE Healthcare) column previously equilibrated with Q-buffer, in which it appeared monomeric. A final purification step was performed by ion exchange chromatography on a MonoQ 10/10 (GE Healthcare) column, using a 50–300 mM NaCl gradient over a total volume of 120 ml. The purified fractions were pooled and dialyzed against 1 liter of 20 mM Tris-HCl, pH 7.5, 50 mM NaCl, 1 mM EDTA, and appeared homogeneous by SDS-PAGE and native PAGE.

Crystal Structures of DcuS and DctB Sensor Domains

Native DcuS-(42–181) crystals were grown by hanging-drop vapor diffusion against a reservoir buffer containing 24% polyethylene glycol monoethyl ether (PEG MME) 2000, 15% isopropyl alcohol, 0.2 mM ammonium citrate, and 0.1 mM sodium acetate, pH 4.5 at 4 °C. A protein concentration of 18.5 mg/ml and a protein to buffer ratio of 1:1 (2 g/liter) was used. SeMet DctB-(28–286) crystals were grown by the same method with the same buffer, except the concentration of PEG MME 2000 was reduced to 20%, and a protein concentration of 16 mg/ml was used. Long hexagonal rod-shaped crystals typically appeared overnight and grew to a reasonable size within a week. Crystals were briefly soaked in cryoprotectant containing 25% PEG MME 2000, 15% isopropyl alcohol, 0.2 mM ammonium citrate, 0.1 mM sodium acetate, pH 4.5, and 7.5% glycerol prior to freezing in liquid nitrogen.

SeMet DctB-(28–286) crystals were grown by hanging-drop vapor diffusion at 4 °C against a buffer containing 6% isopropyl alcohol, 0.2 mM calcium acetate, and 0.1 mM Tris-HCl, pH 7.5. A protein concentration of 8.5 mg/ml was used with a protein to buffer ratio of 1:1 (2 µl/g/liter). Crystals typically appeared overnight and grew to an optimal size within 2 weeks. The crystals were initially soaked in crystallization buffer supplemented with glycerol and ethylene glycol at 7.5 and 5%, respectively; and crystals were then subsequently transferred to a comparison buffer containing 24% polyethylene glycol monoethyl ether, r.m.s.d., root-mean-square deviation; SeMet, selenomethionyl; PEG MME, polyethylene glycol monoethyl ether.
Crystal Structures of DcuS and DctB Sensor Domains

Bible buffer in which the glycerol and ethylene glycol was raised to 15 and 10%, respectively, prior to freezing in liquid nitrogen.

Structure Determination of DcuS-(42–181) in Complex with Malate—A four-wavelength MAD experiment at the selenium K-edge was collected on a single frozen SeMet crystal at the X4A beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Diffraction data to Bragg spacings of 2.0 Å (165 mm detector distance) were collected with 10-s exposure times and 1° oscillations at each of the four wavelengths, using inverse beam measurements for the accurate determination of Bijvoet differences. Data were also collected from a single native crystal in two parts, first at a 125-mm detector distance for 15-s exposure times at 1° oscillations and second at a detector distance of 225 mm for 3-s exposure times at 4° oscillations. Two passes were required because very strong reflections at low angles overloaded the detector at the longer exposure times required for the collection of high angle data. The native crystal diffracted to a limit of 1.4-Å spacings. Denzo and Scalepack of the HKL program package (14) were used to process the datasets, which showed the symmetry compatible with space groups P3_21 and P3_21. Solve (15) was used to determine the positions of two sites, which were verified by analysis of Patterson maps using RSPS (16) of the CCP4 program suite (17) and subsequently refined in SHARP (18). One site refined to a high B-factor, indicative of disorder, and the other refined to reasonable values. Phases were calculated to 2.2 Å using the nonlinear least squares program Win-Nonlin (25). The partial specific volume and the solution density were calculated to be 0.7359 ml/g and 1.0081 g/ml, respectively, from the protein sequence and buffer composition using SEDNTERP (26).

RESULTS

Overall Structure of DcuS—The structure of DcuS-(42–181) in complex with malate is shown in Fig. 1, A and B. The asymmetric unit contains one molecule, with clear electron density for residues 46–178 in the initial maps. A total of 133 ordered residues (46–178), 152 water molecules, and one l-malate molecule were refined against native data to a resolution of 1.45 Å with an R and R_free of 21.9 and 23.2%, respectively (Tables 1 and 3).

The structure of DcuS-(42–181) consists of a mixed α/β-structure containing a central β-sheet flanked on either side by α-helices. The central β-sheet is composed of antiparallel strands S1 to S5. N- and C-terminal helices H1 and H6 lie on one side of the sheet; helices H2, H3α, H3β, H4, H5α, and H5β lie on the other side of the sheet, connected to the central sheet through loop regions. Extents of structural elements are shown in Fig. 2. Electron density for malate, a component of the purification buffer, was found in a concave pocket located on the front side of the sheet.

Overall Structure of DctB—The crystal structure of SeMet DctB-(28–286) in complex with succinate is shown in Fig. 1, C and D. Two nearly identical molecules were found in the asymmetric unit, with residues 28–285 ordered in one unit, including the N-terminal Met, and residues 29–286 ordered in the other. A total of 517 residues, two succinate molecules, two calcium ions, and 722 water molecules were refined to a resolution of 1.7 Å to a final R and R_free of 16.2 and 19.9%, respectively (Tables 2 and 3).
The structure of DctB-(28–286) is a mixed α/β-structure containing two subdomains of similar folds, each consisting of a five-stranded antiparallel β-sheet flanked by helices on either side. The overall architecture (Fig. 1, C and D) is such that the distal (relative to the membrane surface) upper subdomain (residues 54–177) is inserted between the first two helices (H1a and H5) of the proximal lower subdomain (residues 28–53 and 178–286). Strands S1 to S5 form the central core of the distal subdomain, and strands S6 to S10 form the core of the proximal subdomain. Helices H1a, H5, H6, H7, and H8 are in the proximal subdomain, whereas helices H1b, H2, H3, and H4 are in the distal subdomain (Fig. 2A). Helices H1–H3 and H5 lie on one side of the central sheet in each subdomain, and the other helices lie on the opposite side. An unusual solvent-exposed Trp in position 259 is found near the apex of the S8 to S9 loop of the proximal subdomain.

Four features of non-protein electron density were found in the structure. Equivalent distinctive features, best fit as succinate, were located in concave pockets along the front side of each distal β-sheet. Succinate is an adventitious ligand, presumably from the E. coli cytosol, and was not a crystallization additive. Two additional spherical features were modeled in as calcium ions with well defined coordination by carbonyl, carboxyl, and water oxygens. Both, one near Asp-66 and the other near Asp-263, mediate lattice contacts between protein molecules. Calcium acetate was a required crystallization ingredient.

TABLE 1

<table>
<thead>
<tr>
<th>Dataset.y</th>
<th>dmin Å</th>
<th>Wavelength Å</th>
<th>No. of reflections</th>
<th>Average redundancy</th>
<th>(I / ⟨I⟩)</th>
<th>Completeness*</th>
<th>Rmerge %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native</td>
<td>1.4</td>
<td>0.9678</td>
<td>29,824</td>
<td>8.6</td>
<td>17.0</td>
<td>99.9 (98.9)</td>
<td>4.6 (23.8)</td>
</tr>
<tr>
<td>SeMet A1</td>
<td>2.0</td>
<td>0.9918 (low)</td>
<td>19,879</td>
<td>5.9</td>
<td>10.5</td>
<td>99.8 (99.8)</td>
<td>6.4 (26.2)</td>
</tr>
<tr>
<td>SeMet A2</td>
<td>2.0</td>
<td>0.9793 (edge)</td>
<td>19,839</td>
<td>5.9</td>
<td>10.9</td>
<td>99.8 (100.0)</td>
<td>6.2 (24.7)</td>
</tr>
<tr>
<td>SeMet A3</td>
<td>2.0</td>
<td>0.9787 (peak)</td>
<td>19,857</td>
<td>5.9</td>
<td>10.6</td>
<td>99.8 (100.0)</td>
<td>6.2 (24.7)</td>
</tr>
<tr>
<td>SeMet A4</td>
<td>2.0</td>
<td>0.9678 (high)</td>
<td>19,869</td>
<td>5.9</td>
<td>9.6</td>
<td>99.8 (100.0)</td>
<td>7.6 (34.1)</td>
</tr>
</tbody>
</table>

* Values in outermost shell are given in parentheses.

$R_{merge} = \langle (I_i - \langle I \rangle) / \langle I \rangle \rangle$, where I_i is the integrated intensity of a given reflection.
Using criteria specified above, the DcuS structure superimposes onto the distal DctB subdomain with an r.m.s.d. of 1.54 Å from 115 structurally aligned C\(^{\alpha}\) positions (Fig. 2B) and onto the proximal DctB subdomain with an r.m.s.d. of 1.68 Å from 67 corresponding C\(^{\alpha}\) positions. The malate-binding DcuS domain relates most closely to the distal, succinate-binding DctB subdomain.

Structural Similarities of DcuS-(42–181) and DctB-(28–286) with Other Proteins—Other crystal structures of periplasmic histidine kinase sensor domains having similar folds include the citrate sensor CitA (27) and the magnesium sensor PhoQ. In our previous analysis of the *E. coli* PhoQ crystal structure (28), we found that these sensor domain structures are distinct from the PAS domain structures with which they share a common \(\beta\)-sheet topology. We introduced the term PDC (PhoQ-DcuS-CitA) sensor domain to describe such folds. Accordingly, a DALI (29) search for structural similarity to our DcuS structure yields highest Z-scores of 15.7 and 8.2 for the PDC sensor domains of CitA and PhoQ, respectively. Although the sequence similarity between DcuS and CitA sensor domains is modest (23.4% identity), they superimpose well with an r.m.s.d. of 1.38 Å over 117 corresponding C\(^{\alpha}\) positions (Fig. 2B and Fig.
Phe-97 and Phe-120. Stereospecificity for L-malate is conferred by phobic contacts between malate and the phenyl groups of Ala-143. There also are hydrogen bonds connecting malate to the side chain of Arg-147. Water-mediated hydrogen bonds engage the ligand through main chain hydrogen bonding, involving residues Lys-121, Gly-140, Phe-141, and Leu-142. The majority of these residues appear to be conserved within the DctB sequences of other organisms.

The relative locations of bound l-malate in DcuS-(42–181) and succinate in DctB-(28–286) are similar, and there is partial overlap of the residues involved in ligand binding in terms of similarities in either relative position and/or composition. The only two residues that are strictly conserved between the two sensors are Phe-120 and Gly-140 of DcuS-(42–181) corresponding to Phe-127 and Gly-148 in DctB-(28–286).

Dimerization of DcuS-(42–181)—In the crystal structure of DcuS-(42–181), an association observed about a crystallographic 2-fold axis is suggestive of a biologically relevant dimer (Fig. 5, A and B). The relative orientation of the two molecules is such that the N- and C-terminal ends are facing the same direction. The dimer interface consists primarily of residues corresponding to the corresponding surfaces of helix H1 and H3β of the two molecules and buries a combined total of 1684 Å² of accessible surface from the two protomers. The dimerization interface is situated on the most hydrophobic surface of the structure. The calculated shape complementarity (34) statistic for the interface is also relatively high at 0.708.

The relative orientation between the DcuS-(42–181) subunits within its putative dimer closely resembles the E. coli PhoQ dimer, which we showed to be physiologically relevant (28), and a recent described molybdate-free/citrate-bound CitA dimer (35), although it is markedly different from a putative molybdate-bound/citrate-bound CitA dimer (27) or a putative dimer of Salmonella typhimurium PhoQ (36). The entire DcuS-(42–181) dimer can be superimposed upon the PhoQ dimer such that there are reasonable structural alignments between conserved secondary structural elements, while allowing overlap between the N- and C-terminal regions of corresponding subunits of both dimers. A similar superimposition can be performed with the molybdate-free/citrate-bound CitA

Table 3: DcuS and DctB refinement statistics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DcuS-(42–181) (with malate)</th>
<th>SeMet DctB-(28–286) (with succinate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bragg spacings (Å)</td>
<td>30 to 1.45</td>
<td>20 to 1.7</td>
</tr>
<tr>
<td>Space group</td>
<td>P32,1</td>
<td>P2,2,2</td>
</tr>
<tr>
<td>Cell parameters: a, b, c (Å)</td>
<td>96.11, 86.11, 35.21</td>
<td>56.31, 90.98, 114.20</td>
</tr>
<tr>
<td>Z/ solvent content (%)</td>
<td>1/48.7</td>
<td>2/49.9</td>
</tr>
<tr>
<td>R1</td>
<td>21.9/23.2</td>
<td>16.2/19.9</td>
</tr>
<tr>
<td>No. of unique reflections</td>
<td>26,860</td>
<td>64,940</td>
</tr>
<tr>
<td>No. of total atoms (non-hydrogen)</td>
<td>1312</td>
<td>5139</td>
</tr>
<tr>
<td>No. of protein atoms</td>
<td>1151</td>
<td>4000</td>
</tr>
<tr>
<td>No. of ligand atoms</td>
<td>9 (malate)</td>
<td>16 (succinate)</td>
</tr>
<tr>
<td>No. of waters</td>
<td>152</td>
<td>721</td>
</tr>
<tr>
<td>Average B factor (Å²)</td>
<td>25.1</td>
<td>20.5</td>
</tr>
<tr>
<td>Root mean square bond ideality (%)</td>
<td>0.010</td>
<td>0.015</td>
</tr>
<tr>
<td>Root mean square angle ideality (%)</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>Protein Data Bank accession code</td>
<td>3BY8</td>
<td>3BY9</td>
</tr>
</tbody>
</table>

Note: R1 = (Σ|Fo| − |Fc|)/Σ|Fo|, where Fo and Fc denote observed and calculated structure factors, respectively.
Rshould was calculated using 5% of data excluded from refinement.
dimer (supplemental Fig. 2), revealing similar dimer interfaces along structurally conserved helices. The orientation of each subunit within each respective dimer differs by a rotation of 13.1 and 14.1° along an axis running roughly perpendicular to the plane of the dimer interface.

Analytical Ultracentrifugation of DcuS-(42–181)—DcuS-(42–181) appears to be monomeric by gel filtration chromatography at low concentration in the presence or absence of ligand, but a monomer-dimer equilibrium could be observed at millimolar protein concentrations by sedimentation equilibrium analytical ultracentrifugation at a physiological pH and ionic strength. Equilibrium data, measured at three different speeds from DcuS-(42–181) in the final purification buffer at 4 °C, indicated self-association. The molecular weight derived from fitting of the data with an only-monomer model is significantly greater than the theoretical monomer molecular weight of DcuS-(42–181). The data were best fit with a monomer-dimer-tetramer model with a dimerization K_d of 9.7 ± 3.7 mM, which yields a calculated monomer molecular weight within 5% of the theoretical (Fig. 6). The small tetramer component was included to improve the residuals slightly, yielding a more accurate monomer molecular weight. We found that the data could not be fit using only monomer, monomer-tetramer, or monomer-trimer model.

DISCUSSION
Canonical sensor histidine kinases detect specific chemicals from outside the cell and signal through the plasma membrane to downstream response regulators. Although there is substantial conservation in cytoplasmic portions of such two-component systems, the external sensor domains are diverse in sequence, and mechanisms for transmembrane signaling remain obscure.

Only a few sensor domain structures have been determined to date, but among these PhoQ, DcuS, CitA, and DctB all adopt the α/β PDC sensor fold. PDC domains are completely distinct from the four-helical bundles of sensor domains from Tar (37) and NarX.3 DcuS and CitA sensor domains belong to the same sequence family, and their structural similarity was expected, but the structural kinship of PhoQ, DcuS and DctB sensors could not be detected from sequences. The DctB family is most remarkable, having sensor domains approximately twice the size of DcuS/CitA sensors, apparently derived from an evolutionary duplication-insertion event that gave rise to similar subdomains arranged in tandem. It seems that the PDC fold might be prevalent among sensor domains of histidine kinases, despite large sequence variations within the superfamily.

Biochemical and genetic studies of DcuS and DctB have shown specificity to C_4-dicarboxylates (7, 11), and activation of the DcuS histidine kinase sensor by L-malate has been characterized (5). We purified DcuS in the presence of 5 mM malate and crystallized the complex in 0.2M citrate, but we find malate specifically bound in the structure to the exclusion of citrate. Although the physiological ligand for $V. cholerae$ DctB was previously unclear, studies have shown that rhizobial DctB is responsive to succinate (5, 7, 11). The co-purification and subsequent co-crystallization of the $V. cholerae$ DctB sensor domain with succinate is undeniable evidence for its specificity. Succinate is a natural metabolite in cells and was not added to any of the buffers used in protein purification or crystallization. Although the dissociation constant for succinate binding has never been reported, the binding must be reversible for...

3 J. Cheung and W. A. Hendrickson, unpublished data.
proper biological function of the receptor. Succinate binds to the distal subdomain of DctB in a manner like that of malate binding to DcuS or citrate binding to CitA (35). Many of the succinate-binding residues in DctB are conserved within the DctB family, and a small subset of these are conserved in the DcuS/CitA family as well. The direct binding of small molecule ligands to the sensor domains of DcuS and DctB contrasts with that of the LuxPQ quorum-sensing complex (32), where the signaling ligand is bound to the periplasmic receptor LuxP, which in turn is bound to the LuxQ periplasmic sensor domain. Although we find calcium bound to two sites in the DctB structure, both mediate lattice contacts, and there is no indication of a requirement for calcium in DctB function.

Sensor histidine kinases exist as homodimers on the cell membrane (4), and signal transduction involves histidine phosphorylation in trans through these dimers upon ligand binding. Although intact sensor domains are in a dimeric environment, intrinsic associations of the isolated domains are often weak. Dimers of sensor domains have been characterized in crystal structures of Tar (37) and PhoQ (28), and we observe meaningful dimers in the DcuS structure as well; but we also show by analytical ultracentrifugation that this DcuS association is very weak ($K_d = 9.7 \pm 3.7 \text{ mM}$), albeit sufficient for appropriate dimerization in the crystal (44 mM protein concentration). We do not see relevant dimers in our DctB crystals, even though intramolecular complementation studies indicate that DctB is active as a dimer (12). Weak intrinsic affinity for self-association by isolated sensor domains is as expected for membrane-tethered protein domains, which can have up to a 10^6-fold lower likelihood for self-association when freed from membrane localization (38, 39). Ligand binding seems to occur independently of receptor dimerization in CitA (27), and this also seems likely for DcuS and DctB.

We believe that the dimer observed in the DcuS crystal lattice is representative of the physiological dimer. Just as in the PhoQ dimer, which we have shown by mutational analysis to be a functionally relevant interface (28), protomers of the DcuS dimer are properly oriented for connecting its N and C termini to the transmembrane four-helix bundle dimer. The DcuS dimer is also structurally similar to the molybdate-free CitA dimer (35), which is also believed to be in a physiologically relevant state. Other putative sensor domain dimers (27, 36) do
not relate to this model. Because isolated PDC sensor domains have very low intrinsic affinity for dimerization (millimolar level K_d values; see Refs. 27, 40 and this work), it is not surprising that lattice contacts can compete effectively with dimerization interfaces.

Ligand binding to the sensor domain must in some manner elicit changes for activation of the sensor histidine kinase. How this might happen in the case of these C_4-dicarboxylate sensors is not clear, but given the envelopment of ligands by protein loops in DcuS and DctB (Fig. 4), ligand-dependent conformational changes seem inevitable. We do find substantial conformational differences when we compare our maltose-bound structure with the solution structure of DcuS solved in presumably the apo state (9). It is difficult, however, to distinguish changes that truly result from ligand binding from differences due to the technique used to solve the structure. Because ligand binding is centered over β-strand S5 which then leads to the membrane through helix H6 of DcuS, a mode for signal transmission is suggested. Whether conformational change caused by ligand binding induces a piston-sliding motion between the N- and C-terminal helices, as suggested in structural studies of Tar (37) and NarX, has yet to be determined.

In DctB the mode for communication from the ligand-binding site to the transmembrane domain is complicated by the presence of the proximal subdomain, which separates the distal ligand-binding site from the transmembrane helices. The function of this proximal subdomain is unknown, but it might be a site for direct interaction with DctA, which is thought to modulate substrate specificity and signaling characteristics of DctB (7, 11). The indole of Trp-259 projects out from the S8 to S9 loop roughly at the level where putative transmembrane helices enter the membrane, with which it may interact.

REFERENCES

28. Cheung, J., Bingman, C. A., Reyngold, M., Hendrickson, W. A., and
Crystal Structures of DcuS and DctB Sensor Domains

34. Lawrence, M. C., and Colman, P. M. (1993) J. Mol. Biol. 234, 946–950